der Staat als moderner und "menschlicher Vollstrecker" der Gesetze, Vorschriften, Richtlinien, Regeln usw. werden so auf Dauer den fähigeren Erwachsenen als mündigen Bürger heranbilden helfen.

Trotz allem wird das wiederholte Üben für den Gefahrenfall - Brandschutzübungen -, das Üben der Maßnahmen für die Erste Hilfe und das Verständnis für Anweisungen - Brandschutzordnungen - für den Fall des Falles notwendig bleiben.

Es ist wohl nicht bekannt, welchen materiellen Wert alle Schulen Deutschlands darstellen.

Bekannt jedoch ist, daß z. Z. jährlich rund 72 Millionen DM im Zusammenhang mit gesetzlich versicherten Unfällen bei Kindergartenkindern, Schülern und Studierenden in der Bundesrepublik Deutschland und Berlin von der Öffentlichkeit aufgebracht werden müssen.

Bild 8. Größere Flaschen mit brennbaren Flüssigkeiten sollten tief stehen. Holzschränke sind dafür ungeeignet.

Untersuchung der Zündmöglichkeiten bei Benutzung von Trennschleifern

E. Behrend

1. Einleitung

Bei der Benutzung von Trennschleifern entsteht im allgemeinen eine Funkengarbe. Es ist zu befürchten, daß durch diese Funkengarbe bestimmte Gas- oder Dampf-Luft-Gemische gezündet werden können, die sich in der Flugbahn oder an der Auftreffstelle der Funken befinden. Mit dieser Möglichkeit muß gerechnet werden, wenn z. B. bei Unfällen mit Kraftfahrzeugen der Tank beschädigt ist und eingeklemmte Personen mit Hilfe einer Trennschleifmaschine geborgen werden sollen. Rettungsmannschaften, die mit Trennschleifmaschinen dort arbeiten müssen, wo mit der Gefahr der Entstehung explosibler Gas- oder Dampf-Luft-Gemische gerechnet werden muß, sollten diese Gefahr und deren Behebung kennen. Es ist deshalb zu untersuchen, ob durch Schleiffunken oder andere beim Trennen entstehende glühende Teile Motorenbenzin-, Benzol-, Petroläther-, Aceton-

Oberregierungsrat Dipl. - Ing. Behrend bei der Bundesanstalt für Materialprüfung (BAM), Berlin-Dahlem.

Äthylalkoholdampf-(Spiritusdampf-)Luft-Gemische sowie Propanund Stadtgas-Luft-Gemische gezündet werden können.

2. Bisherige Beobachtungen über Schleiffunken

Mehrere Autoren*) haben unter verschiedenen Versuchsbedingungen festgestellt, daß Gemische aus brennbaren Gasen oder Dämpfen mit hoher Mindestzündenergie (> 0,2 Millijoule), zu denen auch Benzin-, Benzol-, Aceton- und Äthylalkoholdampf- sowie Propangas-Luft-Gemische gehören, durch Schleiffunken, wie sie beim kurzzeitigen (< 3 sec) Pressen einer Stahlprobe mit einem Druck von etwa 2 kp/ cm² an einer Korundscheibe entstehen, nicht gezündet werden können. Werden jedoch zwei Stahlflächen mit großer Geschwindigkeit und Kraft gegeneinander gerieben oder wird die Schleifprobe über eine längere Zeit und mit einer solchen Kraft an die Scheibe gepreßt, daß von der geschliffenen Fläche schweißperlenähnliche Teile abtropfen, oder erhitzt sich die

*) Handbuch der Raumexplosionen Teil III. Abschnitt e, herausgegeben von Heinz Helmuth Freytag, Verlag Chemie GmbH, 1965.

Schleiffläche selbst stark, so können die vorher angegebenen Gemische gezündet werden. Da zur Zündung dieser Gemische hohe Energiebeträge erforderlich sind, sollte durch die Untersuchung festgestellt werden, ob bei der Benutzung der Trennschleifer ähnlich hohe Energiebeträge anfallen, die die Erzeugung zündfähiger Schleiffunken oder heißer Flächen bewirken.

3. Versuchseinrichtungen

Für die Durchführung der Versuche mit den Dampf-Luft-Gemischen wurde ein offenes Versuchsgerät gebaut. Es ist auf dem Bild 1 wiedergegeben. Es besteht im wesentlichen aus einem Gestell mit zwei Führungsleisten, auf denen der Trennschleifer geführt wird, dem fest angeschraubten Trennmaterial und den Auffangblechen für die Funken. Zur gleichmäßigen Führung auf dem Gestell ist der Trennschleifer mit vier Achsen versehen, an deren Ende jeweils ein Kugellager angebracht ist. Als Trennschleifmaschine wurde ein Gerät der Firma Bosch, Typ 1307, das auch z.B. bei der Berliner Feuerwehr eingeführt ist, verwendet. Die Drehzahl der Trennscheibe beträgt im Leerlauf 6500 U/min. Beim Schei-

bendurchmesser von 230 mm ergibt dies eine Umfangsgeschwindigkeit von etwa 80 m/sec. Beim Betrieb ist die Umfangsgeschwindigkeit von der Anpreßkraft und der Härte des Trennmaterials abhängig. Bei den Versuchen betrug der Anpreßdruck etwa 10 kp/ cm2. Die beim Trennvorgang entstehende Funkengarbe wurde so gelenkt, daß sie in Lachen der brennbaren Flüssigkeiten gelangte, deren Dämpfe zu entzünden waren. Bei den Versuchen mit dem offenen Gerät wurden keine Konzentrationsmessungen der Dampfphase vorgenommen. Die Funkengarbe wurde bei zusätzlichen Versuchen auch auf mit brennbaren Flüssigkeiten getränkte Leinenlappen gelenkt.

Zur Durchführung der Versuche mit Gas-Luft-Gemischen und der Kontrollversuche mit Benzindampf-Luft-Gemischen wurde ein geschlossenes Explosionsgefäß gebaut. Es ist auf dem Bild 2 wiedergegeben. Das Gefäß hat ein Volumen von 30 l. Die Druckentlastungsöffnung auf der Vorderseite kann mit einer Platzmembran gasdicht verschlossen werden. In der Rückseite des Gerätes ist ein Beobachtungsfenster aus Plexiglas eingesetzt. In der Mitte der Rückwand wird auf einer Steckwelle die Schleifscheibe befestigt. Die Welle wird von außen über einen Riementrieb von einem Elektromotor angetrieben. Die Drehzahl ist die gleiche wie die des Handtrennschleifers. Das Trennmaterial wird in einen verstellbaren Schraubstock eingespannt. Zur Einstellung der gewünschten Konzentrationsverhältnisse wurde bei den Versuchen mit explosiblen Gasgemischen das abgemessene Volumen der Brennstoffkomponente eingelassen; bei den Versuchen mit den Dämpfen brennbarer Flüssigkeiten wurde der Dampf einer gemessenen Flüssigkeitsmenge von der Seite her in das Explosionsgefäß geleitet. Eine Durchmischung wurde durch kurzzeitigen Betrieb der Trennscheibe erreicht, ohne daß das Trennmaterial an die Scheibe gedrückt wurde. Am Gerät ist außerdem eine elektrische Zündkerze angebracht, mit der die explosiblen Gemische gezündet wurden, wenn dies mit den Schleiffunken nicht möglich war.

Die Versuche wurden mit Trennscheiben der Bezeichnung Kronenflex Suprarant A 24 R, Pferd Elastic A 24 N und Bergin fastex FS/TA 30 durchgeführt. Auf den Scheiben war angegeben, daß sie nur für Trockenschliff geeignet sind. Als Versuchsmaterial wurden blanker und angerosteter unlegierter Baustahl (Vickershärte $H_{\nu}=107~{\rm kp/cm^2})$ und Karosserieblech, das zur besseren Handhabung zusammengepreßt wurde, verwendet.

4. Ergebnisse

Im offenen Gerät wurden im Freien bei Temperaturen zwischen 20 und 25 °C Dampf-Luft-Gemische von Motorenbenzin (Super und Normal), Petroläther (Siedebereich 50 bis 75 °C), Äthylalkohol (Spiritus), Benzol und Aceton gezündet.

Die Zündung des Dampf-Luft-Gemisches wurde im allgemeinen nach Schleifzeiten von 3 bis 5 Sekunden erreicht.

Die Unterschiede in der Zündwirkung der von den drei verschiedenen Trennscheiben erzeugten Funken und der Funken aus rostigem Stahl, blankem Stahl und Karosserieblech waren nicht groß. Hervorzuheben ist jedoch, daß es schwieriger war, zündfähige Funken

aus dem Karosserieblech zu erzeugen als aus dem rostigen oder blanken Stahl.

Die Zündversuche mit Stadtgas und Propan wurden im geschlossenen Explosionsgefäß vorgenommen. Zum Vergleich wurden außerdem Versuche mit Normalbenzin durchgeführt. Das Stadtgas wurde aus dem Netz der Berliner GASAG entnommen und hatte folgende Zusammensetzung:

Wasserstoff	52 Vol%
	, 0
Methan	21 Vol%
Sauerstoff/Stickstoff	12 Vol%
Kohlenmonoxid	8 Vol%
Kohlendioxid	7 Vol%

Die Zusammensetzung des Propans entsprach der DIN 51 622. Bei der Zusammensetzung des Stadtgases (über 50 % Wasserstoff) konnte bereits aufgrund der in der BAM vorliegenden Erfahrungen die Zündung des Gas-Luft-Gemisches als sicher angenomwerden. Wasserstoff-Luft-Gemische gehören gegenüber allen anderen Gas- und Dampf-Luft-Gemischen, mit denen diese Untersuchungen durchgeführt wurden, zu den leicht zündbaren explosiblen Gemischen, deren Mindestzündenergie weniger als 0,02 Millijoule beträgt. Durch die Versuche wurde bestätigt, daß z.B. ein 10 %iges Stadtgas-Luft-Gemisch schon bei geringer Funkenerscheinung gezündet wird. Die Zündung der Propan-Luft-Gemische gelang nicht in allen Fällen. Insbesondere beim Trennen von blankem Stahl mit der Pferd-Elastic-Scheibe wurde bei 6 Versuchen nur eine Zündung erreicht. Mit rostigem Stahl gelang die Zündung da-gegen bei jedem Versuch, wenn auch nicht beim Auftreten der ersten Funken. Dagegen wurden Benzindampf-Luft-Gemische beim Trennen von zusammengepreßtem Karosserieblech mit der Bergin-fastex-Scheibe relativ schnell gezündet. Bei den vergleichenden Versuchen im offenen und geschlossenen Gerät fiel auf, daß bei etwa gleichem Anpreßdruck der Scheiben auf das Trennmaterial im offenen Gerät eine intensivere Funkengarbe entstand als in dem geschlossenen Gerät. Dies ist damit zu erklären, daß im offenen Gerät die Funken etwa 30 bis 40 cm durch die Luft flogen, bevor sie in das Dampf-Luft-Gemisch gerieten, und während dieser Zeit der in der Luft vorhandene Sauerstoff zur Verbrennung und damit zur Temperaturerhöhung der Funken beitragen konnte. Es ist sicher, daß die Zündwirkung dieser Funken wegen ihrer höheren Temperatur größer war als die der im geschlossenen Gefäß entstandenen Funken. Im geschlossenen Gefäß und in dem Dampf-Luft-Gemisch im offenen Gefäß ist der Sauerstoffanteil geringer als in der Luft.

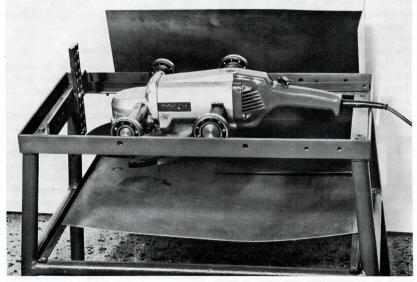


Bild 1.

Bei allen Versuchen fand keine Zündung des Gas- oder Dampf-Luft-Gemisches durch eine stark erhitzte Trennstelle statt.

Zusätzlich zu den Versuchen mit den reinen Gas- oder Dampf-Luft-Gemischen wurden im offenen Gerät mit Äthylalkohol oder Benzin getränkte Leinenlappen in die Funkengarbe gelegt. Auch hier entzündete sich innerhalb von kurzer Zeit das Dampf-Luft-Gemisch und der Leinenlappen. Dabei muß nicht zuerst das Dampf-Luft-Gemisch entzündet worden sein. Es ist bekannt, daß die größere Zündwirkung von ruhenden Funken ausgeht. Leicht entzündliche, feste Stoffe geraten dabei wegen der geringen Wärmeableitung durch Funken in Brand. Auf diesem Umweg können die Funken auch für solche Gasgemische zur Zündquelle werden, die sie unmittelbar nicht zu zünden vermögen.

Schutzmaßnahmen gegen die Entzündung von Gas- oder Dampf-Luft-Gemischen

Zur Eindämmung der Zündwirkung der Schleiffunken wurde die Trennstelle mit Wasser, Stickstoff oder Kohlendioxid berieselt bzw. angeblasen. Die Zündversuche wurden mit einem Benzindampf-Luft-Gemisch durchgeführt. Es stellte sich heraus, daß bei der Anwendung von Wasser ein Trennen mit den bei den Versuchen verwendeten Scheiben nicht mehr möglich ist.

Bei der Anwendung von Stickstoff, der so auf die Trennstelle geblasen wurde, daß er auch noch den größten Teil der Funkengarbe einhüllte, kam es bei 12 Versuchen dreimal zur Zündung des Benzindampf-Luft-Gemisches. Die Funkenbildung wurde geringer. Es bereitet jedoch Schwierigkeiten, den Stickstoff gezielt einzusetzen.

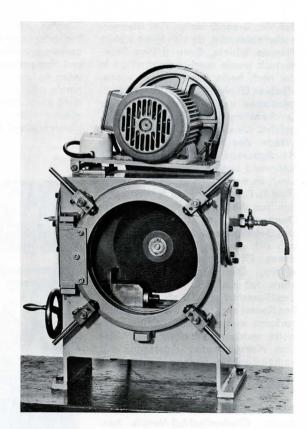


Bild 2.

Bei der Anwendung von Kohlendioxid aus einem CO2-Löscher, wobei das Löschmittel in kurzen Abständen etwa alle 1 bis 2 Sekunden ein kurzer Stoß - auf die Trennstelle und in die Flugbahn hinein gelenkt wurde, konnte die Funkenbildung am stärksten gedämpft werden. Bei 10 Versuchen kam es zu keiner Zündung. Da der löschende Strahl sichtbar ist, kann er auch gezielt auf die Trennstelle, in die Funkengarbe oder, je nach den Gegebenheiten, auch auf die Auftreffstelle der Funken gelenkt werden. Bei richtiger Abdeckung mit CO2 kann eine Zündung ausgeschlossen werden.

6. Zusammenfassung

Aufgrund der Versuchsergebnisse sind die Funken von Trennschleifscheiben zu den energiereichen Funken zu zählen. Sie sind in der Lage, auch schwerzündbare Gas-Luft- oder Dampf-Luft-Gemische, deren Mindestzündenergie etwa 0,2 Millijoule oder mehr beträgt, zu zünden.

Die Eindämmung der Funkenbildung und damit die Verringerung ihrer Zündwirkung kann am besten dadurch erreicht werden, daß die Trennstelle, die Funkengarbe und nach Möglichkeit auch die Auftreffstelle der Funken mit Kohlendioxid abgedeckt werden.

Millionenschaden an einem Hochdruckdampfkessel

Ernst Kuhn

In einem Heizkraftwerk einer Autofirma entstand an einem der Hochdruckdampfkessel eine Explosion und man fragt sich, wie bei den geltenden Sicherheitsvorschriften so etwas möglich ist. Der Schaden belief sich auf etwa 1,5 Millionen DM.

Die Explosion ereignete sich an einem ölbeheizten Membranwandkessel. Dieser arbeitet mit einem Druck von 125 atü, 530 °C und erzeugt 150 t Dampf pro Stunde. Der in Betrieb befindliche Kessel mußte infolge einer undichten Dichtung an der Trommel des Wasserstandsanzeigers außer Betrieb genommen werden. Nach der relativ kurzen Betriebsunterbrechung (etwa 45 Min.) war ein sogenannter Heißstart (Außerbetriebsetzung bis zu 2 Std.) erforderlich. Beim Anfahren des Brenners 1

Oberregierungsbaudirektor Ernst Kuhn bei der Württ. Gebäudebrandversicherungsanstalt, Stuttgart.